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22. Address computation 
Learning objectives:

• hashing

• perfect hashing

• collision resolution methods: separate chaining, coalesced chaining, open addressing (linear probing and  

double hashing)

• deletions degrade performance of a hash table

• Performance does not depend on the number of data elements stored but on the load factor of the hash table.

• randomization: transform unknown distribution into a uniform distribution

• Extendible hashing uses a radix tree to adapt the address range dynamically to the contents to be stored;  

deletions do not degrade performance.

• order-preserving extendible hashing

Concepts and terminology

The term address computation (also hashing, hash coding, scatter storage, or key-to-address transformations) 

refers to many search techniques that aim to assign an address of a storage cell to any key value x by means of a 

formula that depends on x only. Assigning an address to x independently of the presence or absence of other key  

values leads to faster access than is possible with the comparative search techniques discussed in earlier chapters.  

Although this goal  cannot always be achieved, address computation does provide the fastest access possible in 

many practical situations.

We use the following concepts and terminology (Exhibit 22.1). The home address a of x is obtained by means of 

a hash function h that maps the key domain X into the address space A [i.e. a = h(x)]. The address range is A = {0, 

1, … , m – 1}, where m is the number of storage cells available. The storage cells are represented by an array T[0 .. m 

– 1], the hash table; T[a] is the cell addressed by a  ∈ A. T[h(x)] is the cell where an element with key value x is 

preferentially stored, but alas, not necessarily.

Exhibit 22.1: The hash function h maps a (typically large) key domain X into a (much smaller) 

address space A.
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Each cell has a capacity of b > 0 elements; b stands for bucket capacity. The number n of elements to be stored 

is therefore bounded by m · b. Two cases are usefully distinguished, depending on whether the hash table resides on  

disk or in central memory:

1. Disk or other secondary storage device: Considerations of efficiency suggest that a bucket be identified with 

a physical unit of transfer, typically a disk block. Such a unit is usually large compared to the size of an  

element, and thus b > 1.

2. Main memory: Cell size is less important, but the code is simplest if a cell can hold exactly one element (i.e.  

b = 1).

For simplicity of exposition we assume that b = 1 unless otherwise stated; the generalization to arbitrary b is  

straightforward.

The key domain X is normally much larger than the number n of elements to be stored and the number m of  

available cells T[a]. For example, a table used for storing a few thousand identifiers might have as its key domain  

the set of strings of length at most 10 over the alphabet {'a', 'b', … , 'z', '0', … , '9'}; its cardinality is close to 36 10. 

Thus in general the function h is many-to-one: Different key values map to the same address.

The content to be stored is a sample from the key domain: It is not under the programmer's control and is 

usually not even known when the hash function and table size are chosen. Thus we must expect collisions, that is, 

events where more than b elements to be stored are assigned the same address. Collision resolution methods are 

designed to handle this case by storing some of the colliding elements elsewhere. The more collisions that occur, the  

longer the search time. Since the number of collisions is a random event, the search time is a random variable. 

Hash tables are known for excellent  average performance and for terrible worst-case performance,  which, one 

hopes, will never occur.

Address computation techniques support the operations 'find' and 'insert' (and to a lesser extent also 'delete') in 

expected time O(1). This is a remarkable difference from all other data structures that we have discussed so far, in 

that the average time complexity does not depend on the number n of elements stored, but on the load factor λ = 

n / (m · b), or, for the special case b = 1: λ = n / m. Note that 0 ≤ λ ≤ 1.

Before we consider the typical case of a hash table, we illustrate these concepts in two special cases where 

everything is simple; these represent ideals rarely attainable.

The special case of small key domains 

If the number of possible key values is less than or equal to the number of available storage cells, h can map X  

one-to-one into or onto A. Everything is simple and efficient because collisions never occur. Consider the following 

example:

X = {'a', 'b', … , 'z'},  A = {0, … , 25}

h(x) = ord(x) – ord('a');  that is,

h('a') = 0,  h('b') = 1,  h('c') = 2,  …  ,  h('z') = 25.

Since h is one-to-one, each key value x is implied by its address h(x). Thus we need not store the key values 

explicitly, as a single bit (present / absent) suffices:

var  T: array[0 .. 25] of boolean;

function member(x): boolean;

begin  return(T[h(x)])  end;

240



This book is licensed under a Creative Commons Attribution 3.0 License

procedure insert(x);

begin  T[h(x)] := true  end;

procedure delete(x);

begin  T[h(x)] := false  end;

The idea of collision-free address computation can be extended to large key domains through a combination of 

address computation and list processing techniques, as we will see in the chapter "Metric data structures".

The special case of perfect hashing: table contents known a priori 

Certain common applications require storing a set of elements that never changes. The set of reserved words of a  

programming language is an example; when the lexical analyzer of a compiler extracts an identifier, the first issue 

to be determined is whether this is a reserved word such as 'begin' or 'while', or whether it is programmer defined. 

The special case where the table contents are known a priori, and no insertions or deletions occur, is handled more 

efficiently by special-purpose data structures than by a general dictionary.

If the elements x1, x2, … , xn to be stored are known before the hash table is designed, the underlying key domain 

is not as important as the set of actually occurring key values. We can usually find a table size m, not much larger  

than the number n of elements to be stored, and an easily evaluated hash function h that assigns to each xi a unique 

address from the address space {0, … , m – 1}. It takes some trial and error to find such a perfect hash function h 

for a given set of elements, but the benefit of avoiding collisions is well worth the effort—the code that implements a 

collision-free hash table is simple and fast. A perfect hash function works for a static table only—a single insertion, 

after h has been chosen, is likely to cause a collision and destroy the simplicity of the concept and efficiency of the  

implementation. Perfect hash functions should be generated automatically by a program.

The following unrealistically small example illustrates typical approaches to designing a perfect hash table. The  

task gets harder as the number m of available storage cells is reduced toward the minimum possible, that is, the  

number n of elements to be stored.

Example

In designing a perfect hash table for the elements 17, 20, 24, 38, and 51, we look for arithmetic patterns. These 

are most easily detected by considering the binary representations of the numbers to be stored:

    5     4     3     2     1     0  bit position

17 0 1 0 0 0 1

20 0 1 0 1 0 0

24 0 1 1 0 0 0

38 1 0 0 1 1 0

51 1 1 0 0 1 1

We observe that the least significant three bits identify each element uniquely. Therefore, the hash function h(x) 

= x mod 8 maps these five elements collision-free into the address space A = {0, … , 6}, with m = 7 and two empty 

cells. An attempt to further economize space leads us to observe that the bits in positions 1, 2, and 3, with weights 2, 

4, and 8 in the binary number representation, also identify each element uniquely, while ranging over the address 

space of minimal size A = {0, … , 4}. The function h(x) = (x div 2) mod 8 extracts these three bits and assigns the  

following addresses:

X: 17 20 24 38 51

A: 0 2 4 3 1
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A perfect hash table has to store each element explicitly, not just a bit (present/absent). In the example above, 

the elements 0, 1, 16, 17, 32, 33, … all map into address 0, but only 17 is present in the table. The access function  

'member(x)' is implemented as a single statement:

return ((h(x) ≤ 4) cand (T[h(x)] = x));

The boolean operator 'cand' used here is understood to be the  conditional and: Evaluation of the expression 

proceeds from left to right and stops as soon as its value is determined. In our example, h(x) > 4 suffices to assign  

'false' to the expression (h(x) ≤ 4) and (T[h(x)] = x). Thus the 'cand' operator guarantees that the table declared as:

var  T: array[0 .. 4] of element;

is accessed within its index bounds.

For table contents of realistic size it is impractical to construct a perfect hash function manually—we need a 

program to search exhaustively through the large space of functions. The more slack m – n we allow, the denser is  

the population of perfect functions and the quicker we will find one. [Meh 84a] presents analytical results on the  

complexity of finding perfect hash functions.

Exercise: perfect hash tables

Design several perfect hash tables for the content {3, 13, 57, 71, 82, 93}.

Solution

Designing a perfect hash table is like answering a question of the type: What is the next element in the sequence 

1, 4, 9, … ? There are infinitely many answers, but some are more elegant than others. Consider:

h                                                       3  13 57  71 82 93 Address range

(x div 3) mod 7                                1 4 5 2 6 3 [1 .. 6]

x mod 13                                            3 0 5 6   4    2   [0 .. 6]

(x div 4) mod 8                                0 3  6 1 4 7 [0 .. 7]

if  x = 71  then  4  else  x mod 7   3 6 1 4 5 2 [1 .. 6]

Conventional hash tables: collision resolution 

In contrast to the special cases discussed, most applications of address computation present the data structure  

designer with greater uncertainties and less favorable conditions. Typically, the underlying key domain is much 

larger than the available address range, and not much is known about the elements to be stored. We may have an 

upper bound on n, and we may know the probability distribution that governs the random sample of elements to be 

stored. In setting up a customer list for a local business, for example, the number of customers may be bounded by  

the population of the town, and the distribution of last names can be obtained from the telephone directory—many 

names will start with H and S, hardly any with Q and Y. On the basis of such information, but in ignorance of the 

actual table contents to be stored, we must choose the size m of the hash table and design the hash function h that 

maps the key domain X into the address space A= {0, … , m – 1}. We will then have to live with the consequences of  

these decisions, at least until we decide to rehash: that is, resize the table, redesign the hash function, and reinsert 

all the elements that we have stored so far.

Later sections present some pragmatic advice on the choice of h; for now, let us assume that an appropriate hash  

function is available. Regardless of how smart a hash function we have designed, collisions (more than b elements  

share the same home address of a bucket of capacity b) are inevitable in practice. Thus hashing requires techniques 
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for  handling  collisions.  We present  the  three  major collision  resolution techniques  in  use:  separate  chaining, 

coalesced chaining, and open addressing. The two techniques called chaining call upon list processing techniques to 

organize overflowing elements. Separate chaining is used when these lists live in an overflow area distinct from the 

hash table  proper;  coalesced chaining when the lists  live in  unused parts  of  the table.  Open addressing uses 

address  computation  to  organize  overflowing  elements.  Each  of  these  three  techniques  comes  in  different  

variations; we illustrate one typical choice.

Separate chaining 

The memory allocated to the table is split into a primary and an overflow area. Any overflowing cell or bucket in 

the primary area is the head of a list, called the  overflow chain, that holds all elements that overflow from that 

bucket. Exhibit 22.2 shows six elements inserted in the order x1, x2, … . The first arrival resides at its home address; 

later ones get appended to the overflow chain.

Exhibit 22.2: Separate chaining handles collisions in a separate overflow 

area.

Separate chaining is easy to understand: insert, delete, and search operations are simple. In contrast to other  

collision  handling  techniques,  this  hybrid  between  address  computation  and  list  processing  has  two  major 

advantages: (1) deletions do not degrade the performance of the hash table, and (2) regardless of the number m of 

home addresses, the hash table will not overflow until the entire memory is exhausted. The size m of the table has a 

critical influence on the performance. If m « n, overflow chains are long and we have essentially a list processing  

technique that does not support direct access. If m » n, overflow chains are short but we waste space in the table. 

Even for the practical choice m ≈ n, separate chaining has some disadvantages:

• Two different accessing techniques are required.

• Pointers take up space; this may be a significant overhead for small elements.
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• Memory is partitioned into two separate areas that do not share space: If the overflow area is full, the entire 

table is  full,  even if there is still space in the array of home cells. This consideration leads to the next  

technique.

Coalesced chaining 

The chains that emanate from overflowing buckets are stored in the empty space in the hash table rather than in  

a separate overflow area (Exhibit 22.3). This has the advantage that all available space is utilized fully (except for 

the overhead of the pointers). However, managing the space shared between the two accessing techniques gets  

complicated.

Exhibit 22.3: Coalesced chaining handles collisions by building lists that share memory with the hash  

table.

The next technique has similar advantages (in addition, it incurs no overhead for pointers) and disadvantages;  

all things considered, it is probably the best collision resolution technique.

Open addressing 

Assign to each element x ∈ X a probe sequence a0 = h(x), a1, a2, … of addresses that fills the entire address range 

A. The intention is to store x preferentially at a0, but if T[a0] is occupied then at a1, and so on, until the first empty 

cell is encountered along the probe sequence. The occupied cells along the probe sequence are called the collision 

path of x—note that the collision path is a prefix of the probe sequence. If we enforce the invariant:

If x is in the table at T[a] and if i precedes a in the probe sequence for x, then T[i] is occupied. The following fast 

and simple loop that travels along the collision path can be used to search for x:

a := h(x);

while  T[a] ≠ x  and  T[a] ≠ empty  do

a := (next address in probe sequence);

Let us work out the details so that this loop terminates correctly and the code is as concise and fast as we can 

make it.

The probe sequence is defined by formulas in the program (an example of an implicit data structure) rather than 

by pointers in the data as is the case in coalesced chaining.

Example: linear probing

ai+1 = (ai + 1) mod m is the simplest possible formula. Its only disadvantage is a phenomenon called  clustering. 

Clustering arises when the collision paths of many elements in the table overlap to a large extent, as is likely to  

happen in linear probing.  Once elements have collided, linear probing will  store them in consecutive cells.  All 

elements  that  hash  into  this  block  of  contiguous  occupied  cells  travel  along  the  same  collision  path,  thus  
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lengthening this block; this in turn increases the probability that future elements will hash into this block. Once this 

positive feedback loop gets started, the cluster keeps growing.

Double hashing  is a special type of open addressing designed to alleviate the clustering problem by letting 

different elements travel with steps of different size. The probe sequence is defined by the formulas

a0 = h(x),  δ = g(x) > 0,  ai+1 = (ai + δ ) mod m,   m prime

g is a second hash function that maps the key space X into [1 .. m – 1].

Two important important details must be solved:

• The probe sequence of each element must span the entire address range A. This is achieved if m is relatively  

prime to every step size δ, and the easiest way to guarantee this condition is to choose m prime.

• The termination condition of the search loop above is: T[a] = x or T[a] = empty. An unsuccessful search (x  

not in the table) can terminate only if an address a is generated with T[a] = empty. We have already insisted  

that  each probe sequence  generates  all  addresses  in  A.  In  addition,  we must  guarantee  that  the table  

contains at least one empty cell at all times—this serves as a sentinel to terminate the search loop.

The  following  declarations  and  procedures  implement  double  hashing.  We  assume  that  the  comparison 

operators = and ≠ are defined on X, and that X contains a special value 'empty', which differs from all values to be  

stored in the table. For example, a string of blanks might denote 'empty' in a table of identifiers. We choose to  

identify an unsuccessful search by simply returning the address of an empty cell.

const m = … ;  { size of hash table - must be prime! }

empty = … ;

type key = … ;  addr = 0 .. m – 1;  step = 1 .. m – 1;

var T: array[addr] of key;

n: integer;  { number of elements currently stored in T }

function h(x: key): addr;  { hash function for home address }

function g(x: key): step;  { hash function for step }

procedure init; 

var  a: addr;

begin

n := 0;

for a := 0 to m – 1 do  T[a] := empty

end;

function find(x: key): addr; 

var  a: addr;  d: step;

begin

a := h(x);  d := g(x);

while  (T[a] ≠ x) and (T[a] ≠ empty)  do  a := (a + d) mod m;

return(a)

end;

function insert(x: key): addr; 

var  a: addr;  d: step;

begin

a := h(x);  d := g(x);

while  T[a] ≠ empty  do  begin

if  T[a] = x  then  return(a);

a := (a + d) mod m

end;

if  n < m – 1  then  { n := n + 1;  T[a] := x }  else  err-

msg('table is full');
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return(a)

end;

Deletion of elements creates problems, as is the case in many types of hash tables. An element to be deleted  

cannot simply be replaced by 'empty', or else it might break the collision paths of other elements still in the table—  

recall the basic invariant on which the correctness of open addressing is based. The idea of rearranging elements in 

the table so as to refill a cell that was emptied but needs to remain full is quickly abandoned as too complicated—if 

deletions are numerous, the programmer ought to choose a data structure that fully supports deletions, such as 

balanced trees implemented as list structures. A limited number of deletions can be accommodated in an open  

address hash table by using the following technique.

At any time, a cell is in one of three states:

• empty (was never occupied, the initial state of all cells)

• occupied (currently)

• deleted (used to be occupied but is currently free)

A cell in state 'empty' terminates the find loop; a cell in state 'empty' or in state 'deleted' terminates the insert  

loop. The state diagram shown in Exhibit 22.4 describes the transitions possible in the lifetime of a cell. Deletions 

degrade the performance of a hash table, because a cell, once occupied, never returns to the virgin state 'empty'  

which alone terminates an unsuccessful find. Even if an equal number of insertions and deletions keeps a hash table  

at a low load factor λ, unsuccessful finds will ultimately scan the entire table, as all cells drift into one of the states 

'occupied' or 'deleted'. Before this occurs, the table ought to be rehashed; that is, the contents are inserted into a  

new, initially empty table.

Exhibit 22.4: This state diagram describes possible life cycles of a cell: Once occupied, a cell  

will never again be as useful as an empty cell.

Exercise: hash table with deletions

Modify the program above to implement double hashing with deletions.

Choice of hash function: randomization

In conventional terminology, hashing is based on the concept of randomization. The purpose of randomizing 

is  to  transform an  unknown distribution over  the key domain  X into  a  uniform distribution,  and to turn 

consecutive samples that may be dependent into independent samples. This task appears to call for magic, and 

indeed,  there  is  little  or  no  mathematics  that  applies  to  the  construction  of  hash  functions;  but  there  are  

commonsense  observations  worth  remembering.  These  observations  are  primarily  "don'ts".  They  stem  from 

properties that sets of elements we wish to store frequently possess, and thus are based on  some knowledge about 

the populations to be stored. If we assumed strictly nothing about these populations, there would be little to say  

about  hash functions:  an  order-preserving  proportional  mapping  of  X  into  A  would  be  as  good  as  any  other 

function. But in practice it is not, as the following examples show.
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1. A Fortran compiler might use a hash table to store the set of identifiers it encounters in a program being 

compiled. The rules of the language and human habits conspire to make this set a highly biased sample 

from the set  of  legal  Fortran  identifiers.  Example: Integer  variables  begin with I,  J,  K,  L,  M,  N;  this 

convention  is  likely  to generate  a  cluster  of  identifiers  that  begin with  one  of  these  letters.  Example: 

Successive identifiers encountered cannot be considered independent samples: If X and Y have occurred, 

there  is  a  higher chance for  Z  to follow than for WRKHG.  Example: Frequently,  we see sequences of 

identifiers or statement numbers whose character codes form arithmetic progressions, such as A1, A2, A3, 

… or 10, 20, 30, … .

2. All file systems require or encourage the use of naming conventions, so that most file names begin or end  

with one of just a few prefixes or suffixes, such as ···.SYS, ···.BAK, ···.OBJ. An individual user, or a user 

community, is likely to generate additional conventions, so that most file names might begin, for example, 

with  the  initials  of  the  names  of  the  people  involved.  The  files  that  store  this  text,  for  example,  are  

structured according to 'part' and 'chapter', so we are currently in file P5 C22. In some directories, file  

names might be sorted alphabetically, so if they are inserted into a table in order, we process a monotonic 

sequence.

The purpose of a hash function is to break up all regularities that might be present in the set of elements to 

be stored. This is most reliably achieved by "hashing" the elements, a word for which the dictionary offers  

the following explanations: (1) from the French  hache,  "battle-ax"; (2) to chop into small pieces; (3) to 

confuse,  to muddle.  Thus,  to approximate the elusive goal  of  randomization,  a hash function destroys  

patterns, including, unfortunately, the order < defined on X. Hashing typically proceeds in two steps.

1. Convert the element x into a number #(x). In most cases #(x) is an integer, occasionally, it is a real  

number 0 ≤ #(x) < 1. Whenever possible, this conversion of x into #(x) involves no action at all: The  

representation of x, whatever type x may be, is reinterpreted as the representation of the number #(x). 

When x is a variable-length item, for example a string, the representation of x is partitioned into pieces 

of suitable length that are "folded" on top of each other. For example, the four-letter word x = 'hash' is  

encoded one letter per byte using the 7-bit ASCII code and a leading 0 as 01101000 01100001 01110011 

01101000. It may be folded to form a 16-bit integer by exclusive-or of the leading pair of bytes with the  

trailing pair of bytes:

   0110100001100001

xor  01110011011010000

  0001101100001001 which represents #(x) = 27 · 28 + 9 = 6921.

Such folding, by itself, is not hashing. Patterns in the representation of elements easily survive folding.  

For example, the leading 0 we have used to pad the 7-bit ASCII code to an 8-bit byte remains a zero 

regardless of x. If we had padded with a trailing zero, all #(x) would be even. Because #(x) often has the  

same representation as x, or a closely related one, we drop #() and use x slightly ambiguously to denote  

both the original element and its interpretation as a number.

2. Scramble x [more precisely, #(x)] to obtain h(x). Any scrambling technique is a sensible try, as long as 

it avoids fairly obvious pitfalls. Rules of thumb:
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▪ Each bit of an address h(x) should depend on all bits of the key value x. In particular, don't ignore 

any part of x in computing h(x). Thus h(x) = x mod 213 is suspect, as only the least significant 13 bits 

of x affect h(x).

▪ Make sure that arithmetic progressions such as Ch1, Ch2, Ch3, … get broken up rather than being 

mapped into arithmetic progressions. Thus h(x) = x mod k, where k is significantly smaller than the  

table size m, is suspect.

▪ Avoid any function that cannot  produce a uniform distribution of addresses. Thus h(x)  = x2 is 

suspect; if x is uniformly distributed in [0, 1], the distribution of x2 is highly skewed.

A hash function must be fast and simple. All of the desiderata above are obtained by a hash function of the type:

h(x) = x mod m

where m is the table size and a prime number, and x is the key value interpreted as an integer.

No hash function is guaranteed to avoid the worst case of hashing, namely, that all elements to be stored collide 

on one address (this happens here if we store only multiples of the prime m). Thus a hash function must be judged 

in relation to the data it is being asked to store, and usually this is possible only after one has begun using it.  

Hashing provides a perfect example for the injunction that the programmer must think about the data, analyze its  

statistical properties, and adapt the program to the data if necessary.

Performance analysis 

We analyze open addressing without deletions assuming that each address  αi is chosen independently of all 

other addresses from a uniform distribution over A. This assumption is reasonable for double hashing and leads to 

the conclusion that the average cost for a search operation in a hash table is O(1) if we consider the load factor λ to 

be  constant.  We analyze the average number of  probes  executed as a function of  λ in two cases:  U(λ)  for  an 

unsuccessful search, and S(λ) for a successful search.

Let pi denote the probability of using exactly i probes in an unsuccessful search. This event occurs if the first I – 

1 probes hit occupied cells, and the i-th probe hits an empty cell: pi = λi–1 · (1 – λ). Let qi denote the probability that 

at least i probes are used in an unsuccessful search; this occurs if the first i – 1 inspected cells are occupied: q i = λi–1. 

qi can also be expressed as the sum of the probabilities that we probe exactly j cells, for j running from i to m. Thus 

we obtain 

The number of probes executed in a successful search for an element x equals the number of probes in an 

unsuccessful search for the same element x before it is inserted into the hash table. [Note: This holds only when  

elements are never relocated or deleted]. Thus the average number of probes needed to search for the i-th element  

inserted into the hash table is U((i – 1) / m), and S(λ) can be computed as the average of U(µ), for µ increasing in 

discrete steps from 0 to λ. It is a reasonable approximation to let µ vary continuously in the range from 0 to λ:
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Exhibit 22.5 suggests that a reasonable operating range for a hash table keeps the load factor λ between 0.25 and 

0.75.  If  λ is  much smaller,  we waste  space,  if  it  is  larger  than  75  per  cent,  we get  into  a  domain  where the  

performance degrades rapidly. Note: If all searches are successful, a hash table performs well even if loaded up to  

95 per cent—unsuccessful searching is the killer!

Table 22.1: The average number of probes per search grows rapidly as the load factor approaches 1.

λ 0.25 0.5 0.75 0.9 0.95 0.99

U(λ) 1.3 2.0 4.0 10.0 20.0 100.0

S(λ) 1.2 1.4 1.8 2.6 3.2 4.7

Exhibit 22.5: The average number of probes per search grows rapidly as the load factor approaches 1.

Thus the hash table designer should be able to estimate n within a factor of 2—not an easy task. An incorrect 

guess may waste memory or cause poor performance, even table overflow followed by a crash. If the programmer 

becomes aware that the load factor lies outside this range, she may rehash—change the size of the table, change the 

hash function, and reinsert all elements previously stored. 

Extendible hashing 

In contrast  to  standard  hashing  methods,  extendible  forms of  hashing allow for  the  dynamic  extension or 

shrinkage of the address range into which the hash function maps the keys. This has two major advantages: (1)  

Memory is allocated only as needed (it is unnecessary to determine the size of the address range a priori), and (2)  

deletion of elements does not degrade performance. As the address range changes, the hash function is changed in  

such a way that only a few elements are assigned a new address and need to be stored in a new bucket. The idea that  

makes this possible is to map the keys into a very large address space, of which only a portion is active at any given 

time.

Various extendible  hashing methods differ  in the way they represent  and manage a smaller  active address 

range of variable size that is a subrange of a larger virtual address range. In the following we describe the method 

of extendible hashing that is especially well suited for storing data on secondary storage devices; in this case an 

address points to a physical block of secondary storage that can contain more than one element. An address is a bit  

string of maximum length k; however, at any time only a prefix of d bits is used. If all bit strings of length k are  

represented by a so-called radix tree  of height k, the active part of all bit strings is obtained by using only the upper 

d levels of the tree (i.e. by cutting the tree at level d). Exhibit 22.6 shows an example for d = 3.
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Exhibit 22.6: Address space organized as a binary radix tree.

The radix tree shown in  Exhibit 22.6 (without the nodes that have been clipped) describes an active address 

range with addresses {00, 010, 011, 1} that are considered as bit strings or binary numbers. To each active node 

with address s there corresponds a bucket B that can store b records. If a new element has to be inserted into a full  

bucket B, then B is split: Instead of B we find two twin buckets B0 and B1 which have a one bit longer address than B, 

and the elements stored in B are distributed among B0 and B1 according to this bit. The new radix tree now has to 

point to the two data buckets B0 and B1 instead of B; that is, the active address range must be extended locally (by 

moving the broken line in Exhibit 22.6). If the block with address 00 overflows, two new twin blocks with addresses 

000 and 001 will be created which are represented by the corresponding nodes in the tree. If the overflowing bucket  

B has depth d, then d is incremented by 1 and the radix tree grows by one level.

In extendible hashing the clipped radix tree is represented by a directory that is implemented by an array. Let d  

be the maximum number of bits that are used in one of the bit strings for forming an address; in the example above,  

d = 3. Then the directory consists of 2d entries. Each entry in this directory corresponds to an address and points to 

a physical data bucket which contains all elements that have been assigned this address by the hash function h. The 

directory for the radix tree in Exhibit 22.6 looks as shown in Exhibit 22.7.

Exhibit 22.7: The active address range of the tree in Exhibit 22.6 implemented as an array.

The bucket with address 010 corresponds to a node on level 3 of the radix tree, and there is only one entry in the  

directory corresponding to this bucket. If this bucket overflows, the directory and data buckets are reorganized as 

shown in Exhibit 22.8. Two twin buckets that jointly contain fewer than b elements are merged into a single bucket. 

This keeps the average bucket occupancy at a high 70 per cent even in the presence of deletions, as probabilistic  

analysis predicts and simulation results confirm. Bucket merging may lead to halving the directory. A formerly 

large file that shrinks to a much smaller size will have its directory shrink in proportion. Thus extendible hashing,  

unlike conventional hashing, suffers no permanent performance degradation under deletions.
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Exhibit 22.8: An overflowing bucket may trigger doubling of the directory.

A virtual radix tree: order-preserving extendible hashing

Hashing,  in  the usual sense of the word,  destroys  structure and thus buys uniformity at  the cost of  order.  

Extendible hashing, on the other hand, is practical without randomization and thus needs not accept its inevitable 

consequence,  the  destruction  of  order.  A  uniform  distribution  of  elements  is  not  nearly  as  important: 

Nonuniformity causes the directory to be deeper and thus larger than it would be for a uniform distribution, but it  

affects neither access time nor bucket occupancy. And the directory is only a small space overhead on top of the  

space required to store the data: It typically contains only one or a few pointers, say a dozen bytes, per data bucket 

of,  say 1k bytes; it adds perhaps a few percent to the total space requirement of the table, so its growth is not 

critical. Thus extendible hashing remains feasible when the identity is used as the address computation function h,  

in which case data is accessible and can be processed sequentially in the order ≤ defined on the domain X.

When h preserves order, the word hashing seems out of place. If the directory resides in central memory and the 

data buckets on disk,  what  we are implementing is  a virtual  memory organized in the form of a radix  tree of 

unbounded size.  In contrast to conventional virtual memory, whose address space grows only at  one end, this  

address space can grow anywhere: It is a virtual radix tree.

As an example, consider the domain X of character strings up to length 32, say, and assume that elements to be 

stored are sampled according to the distribution of the first letter in English words. We obtain an approximate  

distribution by counting pages in a dictionary (Exhibit 22.9). Encode the blank as 00000, 'a' as 00001, up to 'z' as 

11011, so that 'aah', for example, has the code 00001 00001 01000 00000 … (29 quintuples of zeros pad 'aah'  

to32letters). This address computation function h is almost an identity: It maps {' ', 'a', … , 'z'} 32 one-to-one into {0, 

1}160.  Such  an  order-preserving  address  computation  function  supports  many  useful  types  of  operations:  for 

example, range queries such as "list in alphabetic order all the words stored from 'unix' to 'xinu' ".
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Exhibit 22.9: Relative frequency of words beginning with a given letter in Webster's dictionary.

If there is one page of words starting with X for 160 pages of words starting with S, this suggests that if our  

active address space is partitioned into equally sized intervals, some intervals may be populated 160 times more 

densely than others. This translates into a directory that may be 160 times larger than necessary for a uniform 

distribution, or, since directories grow as powers of 2, may be 128 or 256 times larger. This sounds like a lot but  

may well be bearable, as the following estimates show.

Assume that we store 105 records on disk, with an average occupancy of 100 records per bucket, requiring about 

1000 buckets. A uniform distribution generates a directory with one entry per bucket, for a total of 1k entries, say  

2k  or  4k  bytes.  The  nonuniform  distribution  above  requires  the  same  number  of  buckets,  about  1,000,  but 

generates a directory of 256k entries. If a pointer requires 2 to 4 bytes, this amounts to 0.5 to 1 Mbyte. This is less of  

a memory requirement than many applications require on today's personal computers. If the application warrants 

it (e.g. for an on-line reservation system) 1 Mbyte of memory is a small price to pay.

Thus we see that for large data sets, extendible hashing approximates the ideal characteristics of the special case 

we discussed in this chapter's section on “the special case of small key domains”. All it takes is a disk and a central 

memory of a size that is standard today but was practically infeasible a decade ago, impossible two decades ago, and  

unthought of three decades ago.

Exercises and programming projects

1. Design a perfect hash table for the elements 1, 10, 14, 20, 25, and 26.

2. The six names AL, FL, GA, NC, SC and VA must be distinguished from all other ordered pairs of uppercase 

letters. To solve this problem, these names are stored in the array T such that they can easily be found by 

means of a hash function h.

type addr = 0 .. 7;

pair = record c1, c2: 'A' .. 'Z' end;

var T: array [addr] of pair;

(a) Write a 

function h (name: pair): adr; 

which maps the six names onto different addresses in the range 'adr'.
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(b) Write a 

procedure initTable; 

which initializes the entries of the hash table T.

(c) Write a

 function member (name: pair): boolean; 

which returns for any pair of uppercase letters whether it is stored in T.

3. Consider the hash function h(x) = x mod 9 for a table having nine entries. Collisions in this hash table are 

resolved by coalesced chaining. Demonstrate the insertion of the elements 14, 19, 10, 6, 11, 42, 21, 8, and 1.

4. Consider inserting the keys 14, 1, 19, 10, 6, 11, 42, 21, 8, and 17 into a hash table of length m = 13 using open  

addressing with the hash function h(x) = x mod m. Show the result of inserting these elements using

(a) Linear probing.

(b) Double hashing with the second hash function g(x) = 1 + x mod (m+1).

5. Implement a  dictionary  supporting  the operations 'insert',  'delete',  and 'member'  as  a  hash table  with 

double hashing.

6. Implement a dictionary supporting the operations 'insert', 'delete', 'member', 'succ', and 'pred' by order-

preserving extendible hashing.
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